If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+12z+9=0
a = 1; b = 12; c = +9;
Δ = b2-4ac
Δ = 122-4·1·9
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{3}}{2*1}=\frac{-12-6\sqrt{3}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{3}}{2*1}=\frac{-12+6\sqrt{3}}{2} $
| 9.99x+0.25=113.74 | | 7x3=24 | | n+4-9=5n-81 | | 7x=3x=24 | | 190.00+207.25= | | 2x+1=1x+12345 | | 3k-28=26 | | -6x+3=4x+13 | | (x+10)+2=2x | | 9x-37=51+5x | | 4(x+3)-4=4(x-5) | | B-4+6b=21 | | 7=2+4n+5 | | 2/3x+9=-3 | | 1x+2=1x+12345 | | H=2d^2+100 | | 3/4n+5=-4 | | 9y-7y-y=13 | | 25-10z=15;-1 | | 190.00+(0.25)=397.50 | | 2b=45-3b | | -5-4x=6+2x | | 150m-100m+48,500=50,750-200m | | 3p-p-p+2p=18 | | 23-11c÷7=5c | | -6/3x+6=0 | | 2(-5n)=4(15) | | 3.2=7.7-0.9x | | -5x+3=-7x+9 | | -54x=6+2x | | X-81=95-10x | | (7x+5)^2=64 |